US 2020/0258338 Al

In some embodiment voting databases 140 can correspond
to some or all of databases 150 from FIG. 1. In some
embodiments voting databases 1404 can comprise two sepa-
rate databases votes database 1405 and signature database
1406. In some embodiments, the blockchain access layer
sends data about the actual votes that the user submitted to
votes database 1405 and submits data about the identity of
the user including the digitized signature and VoterID to
signature database 1406 (shown as 1la on FIG. 14). Sepa-
rating the storage of the identity of the voter from the votes
case helps to ensure that the votes are anonymous. In some
embodiments, the data in both voting databases can be
encrypted through the use of an unbound key pair stored in
in a unbound key pair cache or database. In some embodi-
ments, the unbound key pair cache or databases stores
multiple keys in separate key modules and then encrypts the
data using each portion of the key in each module. In some
embodiments, this can be two or three modules. This
increases security by requiring that an attacker compromise
all the modules in order to decrypt the data. In some
embodiments, the unbound key pair cache or database can
correspond to key store 604.

[0123] In some embodiments, the blockchain abstraction
layer 1402 can also create an entry on the submitted vote
blockchain 1407 as it creates the entries in the voting
databases 140 (shown as 15 on FIG. 14). The blockchain
abstraction layer 1402 records, on the submitted vote block-
chain 1407 to stores information about the voting. In some
embodiments, for each ballot submitted, the blockchain
abstraction layer 1402 creates a votelD, a unique entry on
the submitted vote blockchain 1407 that contains a unique
number that corresponds to the cast ballot or an instance of
the vote or of a receipt of ballot selections, and a pointer that
points to the vote record stored in the votes database 1405,
a pointer that points to the data in the signature database
1406, a hash of the digitized signature of the voter, and a
count of all of the votes currently submitted.

[0124] Once the data has been stored in the voting data-
bases 1404, and the above data has been written to the
submitted vote blockchain 1407 the blockchain abstraction
layer 1402 can also transmit the signature data to a vote by
mail election official application 1403. The application 1403
can be used by an election official to verify that the correct
voter casts the votes. In some embodiments, this can be done
by comparing the digitized signature in the signature data
with the signature on file when the voter registered to vote.
An election official can perform this comparison to validate
a voter and to approve the casting of votes by the voter. The
election official uses application 1403 to inform the block-
chain abstraction layer 1402 that the vote is approved
(shown as 2 on FIG. 14).

[0125] In some embodiments, once the voter is approved,
the blockchain abstraction layer 1402 creates an entry on
accepted vote blockchain 1408. The accepted vote block-
chain 1408 can be stored in blockchain database, or as part
of a blockchain distributed ledger, or on another desired
blockchain architecture. In some embodiments, accepted
vote blockchain 1408 contains the VotelD, and includes the
actual ballot choices for the vote, and the tabulation of all the
votes currently casted in the election. In some embodiments,
once this entry is created on the accepted vote blockchain
1408 all links between the actual votes cast and the affidavit
or identity of the voter casting the votes are deleted.

Aug. 13,2020

[0126] In some embodiments, the votes can also be veri-
fied using verification contract database 1409 as discussed
more below.

[0127] FIG. 15 displays one embodiment of a system that
can be used to verify data sent out of the secure voting
system using a verification smart contract. The system of
verifications described herein provides auditability and a
strong reporting mechanism. In some embodiments, this
system can be combined with any and all features of the
systems described elsewhere herein in order to create a
secure voting system. In some embodiments, the system
comprises a vote by mail import application 1501. Vote by
mail import application 1501 is an application that is used to
transmit or import election data 1502 into the blockchain
abstraction layer 1402. In some embodiments, election data
can be any data that is transmitted to blockchain abstraction
layer 1402 from any other part of the system, including
information creating or establishing the ballot, any vote data
sent by the VBM application 1401, or any data sent by
election official application 1403.

[0128] In some embodiments, when the blockchain access
layer 1401 receives election data 1502, the blockchain
abstraction layer 1402 can use the verification service mod-
ule 1504 to create a hash of the data that was transmitted. In
some embodiments, the verification service module 1504
can be part of the blockchain abstraction layer 1402. In other
embodiments, the verification service module 1504 can be a
separate component. This hash is then stored on the verifi-
cation contract database 1409 as part of a blockchain. In
some embodiments, the hash can also be transmitted to
neutral third party location to provide an additional level of
security for the system. At the same time, the blockchain
abstraction layer 1402 stores the data in the database 1503.
In some embodiments, the data is stored in any of the
databases 150 described above or in the voting databases
1404, or any other database that the blockchain abstraction
layer 1402 can use to store data.

[0129] In some embodiments, when any client device,
such as applications 1401 and 1403, then reads data from
blockchain abstraction layer 1402, the blockchain abstrac-
tion layer 1402 can read the data from the database 1503 and
also retrieve the hash from verification contract database
1409 and transmit the data to the client device. Then the
client device can calculate its own hash of the transmitted
data and compare it the hash of the data it received to
determine if the data has been altered. If the calculated hash
and the received hash do not match, a flag or error can be
generated to indicate that data has been altered, corrupted,
tampered with, or can identify another problem.

[0130] In some embodiment, the hash comparison can
occur whenever data is retrieved by the system. In other
embodiments, the system will only calculate and compare
hashes at certain checkpoints. These checkpoints can occur
at the following points: data ingestion, when the election
data is ingested; Ballot storage, when ballot contents are
stored to ensure they are unchanged from when they were
received; ballot presentment to voter, such as checking the
validity or integrity of the ballot before it is provided to the
voter; vote submission, when the votes are submitted; vote
tabulation, when the votes are counted to ensure that only
votes that have not been tampered with are counted; vote
metrics, to ensure that the auditability metrics are secure.
For example, the system can periodically check the hash of
the ballot information to ensure that the ballot contents did



